Una buena pregunta, porque parece algo imposible y sin embargo es algo que probablemente nos pasará pronto. ¿Y cómo puede ser que esto pueda ocurrir?
Basta leer este post en el excelente blog de Mark de Zabaleta para entenderlo, pero hago un resumen del artículo.
Ya en 1785, Condorcet publicó el “Ensayo sobre la aplicación del análisis a la probabilidad de las decisiones sometidas a la pluralidad de voces”. En esta obra, explora la paradoja de Condorcet, que describe como las decisiones adoptadas por una mayoría popular siguiendo un modelo de escrutinio pueden ser incoherentes con respecto a las que adoptaría un individuo racional. Y planteó un ejemplo sencillo:
Considemos por ejemplo una asamblea de 60 votantes que deben elegir entre tres propuestas a, b y c. Las preferencias se manifiestan de este modo (entendiendo que a > b representa el hecho de que se prefiere a a b):
23 votantes prefieren: a > c > b
19 votantes prefieren: b > c > a
16 votantes prefieren: c > b > a
2 votantes prefieren: c > a > b
En un proceso de voto pluralista, a gana con 23 votos, sobre b con 19 votos y sobre c con 18, por lo que a > b > c.
Sin embargo, en las comparaciones por pares obtenemos:
35 prefieren b > a contra 25 para a > b
41 prefieren c > b contra 19 para b > c
37 prefieren c > a contra 23 para a > c
Lo que nos lleva a la preferencia mayoritaria c > b > a, exactamente contraria a la elección pluralista.
Hay que señalar que contrariamente a la creencia común, esta paradoja sólo cuestiona la coherencia de determinados sistemas de votación, no la de la propia democracia.
Pero aún hay más: el teorema de imposibilidad de Arrow, también llamado la paradoja de Arrow (fue premio Nobel de Economía en 1972, junto con el británico Sir John R. Hicks, por sus teorías sobre el equilibrio general económico y el bienestar), e irónicamente, denominado también el teorema de la imposibilidad de la democracia.
Este teorema demuestra que no es posible diseñar reglas para la toma de decisiones sociales o políticas que obedezcan a un cierto conjunto de criterios «razonables».
Una sociedad necesita acordar un orden de preferencia entre diferentes opciones.
Cada individuo en la sociedad tiene su propio orden de preferencia personal. El problema es encontrar un mecanismo general (una función de selección social) que transforme el conjunto de los órdenes de preferencia individuales en un orden de preferencia para toda la sociedad.
La Paradoja de Arrow (o Teorema de imposibilidad) establece que cuando se tienen tres o más alternativas para que un cierto número de personas voten por ellas, no es posible diseñar un sistema de votación que permita generalizar las preferencias de los individuos hacia una preferencia global de la comunidad.
Basta leer este post en el excelente blog de Mark de Zabaleta para entenderlo, pero hago un resumen del artículo.
Ya en 1785, Condorcet publicó el “Ensayo sobre la aplicación del análisis a la probabilidad de las decisiones sometidas a la pluralidad de voces”. En esta obra, explora la paradoja de Condorcet, que describe como las decisiones adoptadas por una mayoría popular siguiendo un modelo de escrutinio pueden ser incoherentes con respecto a las que adoptaría un individuo racional. Y planteó un ejemplo sencillo:
Considemos por ejemplo una asamblea de 60 votantes que deben elegir entre tres propuestas a, b y c. Las preferencias se manifiestan de este modo (entendiendo que a > b representa el hecho de que se prefiere a a b):
23 votantes prefieren: a > c > b
19 votantes prefieren: b > c > a
16 votantes prefieren: c > b > a
2 votantes prefieren: c > a > b
En un proceso de voto pluralista, a gana con 23 votos, sobre b con 19 votos y sobre c con 18, por lo que a > b > c.
Sin embargo, en las comparaciones por pares obtenemos:
35 prefieren b > a contra 25 para a > b
41 prefieren c > b contra 19 para b > c
37 prefieren c > a contra 23 para a > c
Lo que nos lleva a la preferencia mayoritaria c > b > a, exactamente contraria a la elección pluralista.
Hay que señalar que contrariamente a la creencia común, esta paradoja sólo cuestiona la coherencia de determinados sistemas de votación, no la de la propia democracia.
Pero aún hay más: el teorema de imposibilidad de Arrow, también llamado la paradoja de Arrow (fue premio Nobel de Economía en 1972, junto con el británico Sir John R. Hicks, por sus teorías sobre el equilibrio general económico y el bienestar), e irónicamente, denominado también el teorema de la imposibilidad de la democracia.
Este teorema demuestra que no es posible diseñar reglas para la toma de decisiones sociales o políticas que obedezcan a un cierto conjunto de criterios «razonables».
Una sociedad necesita acordar un orden de preferencia entre diferentes opciones.
Cada individuo en la sociedad tiene su propio orden de preferencia personal. El problema es encontrar un mecanismo general (una función de selección social) que transforme el conjunto de los órdenes de preferencia individuales en un orden de preferencia para toda la sociedad.
La Paradoja de Arrow (o Teorema de imposibilidad) establece que cuando se tienen tres o más alternativas para que un cierto número de personas voten por ellas, no es posible diseñar un sistema de votación que permita generalizar las preferencias de los individuos hacia una preferencia global de la comunidad.
No hay comentarios:
Publicar un comentario